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Mapping the spatial variability of 
HIV infection in Sub-Saharan Africa: 
Effective information for localized 
HIV prevention and control
Diego F. Cuadros1,2, Jingjing Li1, Adam J. Branscum3, Adam Akullian4, Peng Jia5, Elizabeth N. 
Mziray6 & Frank Tanser7,8

Under the premise that in a resource-constrained environment such as Sub-Saharan Africa it is not 
possible to do everything, to everyone, everywhere, detailed geographical knowledge about the HIV 
epidemic becomes essential to tailor programmatic responses to specific local needs. However, the 
design and evaluation of national HIV programs often rely on aggregated national level data. Against 
this background, here we proposed a model to produce high-resolution maps of intranational estimates 
of HIV prevalence in Kenya, Malawi, Mozambique and Tanzania based on spatial variables. The HIV 
prevalence maps generated highlight the stark spatial disparities in the epidemic within a country, and 
localize areas where both the burden and drivers of the HIV epidemic are concentrated. Under an era 
focused on optimal allocation of evidence-based interventions for populations at greatest risk in areas 
of greatest HIV burden, as proposed by the Joint United Nations Programme on HIV/AIDS (UNAIDS) 
and the United States President’s Emergency Plan for AIDS Relief (PEPFAR), such maps provide 
essential information that strategically targets geographic areas and populations where resources can 
achieve the greatest impact.

Mounting evidence suggests a large geographical variation in the sub-Saharan Africa (SSA) human immu-
nodeficiency virus (HIV) epidemic1–4. HIV transmission has been shown to be concentrated across clustered 
micro-epidemics of different scales within a country2, 4. This evidence has been aligned with the Joint United 
Nations Programme on HIV/AIDS (UNAIDS) concept “know your epidemic, know your response” for the iden-
tification of populations at higher risk of the infection5. Identifying areas where the burden of HIV infection 
is concentrated might play a key role in identifying populations at higher risk of the infection, and knowledge 
of high and low risk areas is required for successful surveillance programs and optimal resource allocation6–10. 
Moreover, micro-level data on HIV spatial distribution patterns could help to prevent new HIV infections and 
scale up treatment by prioritizing the allocation of resources to high burden areas and aligning service delivery 
modalities to the needs of the population.

Other programs such as The United States President’s Emergency Plan for AIDS Relief (PEPFAR) have also 
gradually shifted their strategies toward optimizing resource allocation by including geographically relevant data 
as a way of increasing program impact and efficiency11. To achieve epidemic control UNAIDS is promoting the 
90–90–90 strategy which states that by 2020, 90% of all people living with HIV know their HIV status, 90% of 
all people with diagnosed HIV infection receive sustained antiretroviral therapy, and 90% of all people receiving 
antiretroviral therapy have viral suppression. To be able to achieve the 90-90-90 goals it is essential to be able to 
identify the geographic locations that have the highest HIV burden.
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Previous research has assessed the benefits of focusing resources and control interventions using a 
spatially-targeted allocation strategy12. Results support this strategy as being the most efficient for optimal allo-
cation of resources within a country, in contrast to a homogeneous distribution of resources12–14. Despite the 
significance of geographical location in understanding the dynamics of the HIV epidemic and in optimizing 
resource allocation for its prevention and control, the spatial heterogeneity of HIV in SSA is still not completely 
understood. Most measures of HIV occurrence are frequently available only for large geographical administrative 
units. These large-scale (national or regional) measures can obscure localized aspects of the HIV transmission 
process. A major conclusion from a UNAIDS meeting in 2013 was that generating subnational estimates, particu-
larly high resolution maps of HIV prevalence, would support the urgent need for countries to describe their epi-
demic at localized levels15. The HIV Modelling Consortium was commissioned to address this technical challenge 
(http://www.hivmodelling.org/projects/ methods-sub-national-estimates-hiv-prevalence), and, in collaboration 
with modeling groups, UNAIDS representatives, and members of national program teams, evaluated models and 
methods to achieve the goal of generating detailed subnational geographic estimates of HIV prevalence16.

The aim of this article is to use one of the models from the HIV Modelling Consortium to produce 
high-resolution maps of intranational estimates of HIV prevalence in SSA based on spatial variables.

Methods
Data sources.  The main source of data for our study was the Demographic and Health Survey (DHS)17. We 
focused our evaluation to countries located at the eastern part of SSA, where the prevalence of HIV is high and 
there is substantial spatial variability of HIV prevalence within countries18. Moreover, countries were included 
for analysis based on the availability of DHS data from HIV serological biomarker surveys and the corresponding 
geographic coordinates (latitude and longitude) of sampled locations. For each country, we extracted informa-
tion from the most recent DHS where HIV data were collected. Data from four countries with generalized HIV 
epidemic were included, namely Kenya (2008–2009)19, Malawi (2010)20, Mozambique (2009)21, and Tanzania 
(2011–2012)22.

Subjects were enrolled in DHS surveys via a two-stage sampling procedure to select households. In Kenya, 392 
DHS sample locations were selected, 832 were selected in Malawi, 269 in Mozambique, and 568 in Tanzania. The 
global positioning system was used to identify and record the geographical coordinates of each DHS sample loca-
tion (Fig. 1). Men and women in the selected households were eligible for the study. The study population used 
in our data analysis consisted of 6,906 individuals in Kenya (3,641 women and 3,265 men), 13,930 individuals in 
Malawi (7,091 women and 6,839 men), 13,781 individuals in Mozambique (7,895 women and 5,886 men), and 
17,745 individuals in Tanzania (9,756 women and 7,989 men).

Anonymous HIV testing was performed with the informed consent of all sampled individuals. HIV serostatus 
was determined by testing with the enzyme-linked immunosorbent assay (ELISA) Vironostika Uniform 2 Ag/AB. 
All samples that tested positive and a random sample of 10% of samples that tested negative were retested with a 
second ELISA, the Enzygnost® HIV Integral II assay (Siemens). Positive samples on both tests were classified as 
HIV positive. If the first and second tests were discordant, the two ELISAs were repeated; if the results remained 
discordant, a confirmatory test, the HIV 2.2 western blot (DiaSorin), was administered. Further details related to 
the DHS methodology, study design, and data can be found elsewhere22–24.

Spatial variable selection.  To assess socioeconomic, demographic, and biological variables that may be 
associated with the spatial distribution of HIV and that have been previously associated with the risk of HIV 
infection25–30, we conducted preliminary bivariate analyses of nine variables extracted from the DHS of each 
country and other sources. Variables extracted from each DHS included condom use during the last sexual con-
tact, male circumcision, number of lifetime sexual partners, highest educational level, wealth index, and ever 
been tested for HIV. These variables were evaluated as percentages (calculated using the data collected at each 
DHS sample location). Specifically, for each sampled location, condom use refers to the percent of individuals 
who used a condom during the last time having sex, male circumcision refers to the percent of circumcised males, 
number of lifetime sexual partners is the percent of individuals with less than three lifetime sexual partners, and 
level of education is the percent of individuals with secondary or higher education. Wealth index is an ordinal 
variable that describes standard of living as determined by material possessions. The DHS calculated the living 
standard of a household based on key assets such as television and bicycles, materials used for housing construc-
tion, and types of water access and sanitation facilities. The resulting asset scores were used to define wealth quin-
tiles: poorest, poorer, middle, richer, richest. This index was used to calculate a poverty variable as the percent of 
poorest and poorer people.

Other variables included in the analysis were the normalized difference vegetation index (NDVI), a proxy 
variable for degree of urbanization that also serves as a measure of potential risk of coinfection with parasitic 
diseases, which has been shown to increase HIV transmission efficiency in SSA26, 31, 32. Distance to main roads 
and population density were additional variables included in our analysis. All variables were quantified at each 
DHS sample location. For example, there were 568 DHS sample locations in Tanzania, and the distance from 
each sample location to the closest main road was calculated (Figure S4). NDVI was obtained from the National 
Aeronautics and Space Administration (NASA) Earth Observatory Group33. The distance to main roads was 
derived from a road networks dataset sourced from a geographic information system (DIVA-GIS)34. Population 
density was collected from NASA’s Socioeconomic Data and Applications Center35.

Data from each country were analyzed by first exploring the randomness of the geographical distribution 
(spatial structure) of each variable using Moran’s Index for spatial autocorrelation. We then assessed the associa-
tion between each variable and HIV prevalence by performing bivariate logistic regression analysis. Multivariable 
logistic regression models were used to examine the associations between selected variables and HIV preva-
lence in each country using SAS® version 9.336. The dependent variable, yi, was the number of HIV seropositive 
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individuals at sample location i. The model posited yi ~ binomial (Ni, pi), where Ni is the total number of indi-
viduals sampled and pi is the HIV prevalence at sample location i. The HIV prevalence was related to predictor 
variables using the multivariable regression model

β β β β β= + + + + … +logit p X X X X( ) , (1)i i i i k ki0 1 1 2 2 3 3

where Xji denotes the value of predictor variable j (e.g., percent of circumcised males) at location i and βj is the 
corresponding regression coefficient.

Variable selection was based on two conditions, namely the bivariate logistic regression coefficient must have 
p-value < 0.1 and the Moran Index test for spatial autocorrelation must have p-value < 0.05. Population density 
was included in the final model for each country.

Mapping Predictor Variables and HIV prevalence.  Kriging has been widely used in spatial map-
ping37–40. We used the method of ordinary kriging to predict the values of variables at unmeasured locations 
by estimating a variogram of weighted averages of the data41. Continuous surface maps for each variable are 

Figure 1.  The overall study area (top right panel) and Demographic and Health Survey (DHS) sample locations 
(blue dots) for each country included in the study. Maps were created using ArcGIS® software by Esri version 
10.342 (http://www.esri.com/).

http://www.esri.com/
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presented in Supplementary Figures 1–4. An HIV prevalence map for each country was then generated by substi-
tuting values from all continuous surface maps into the country-specific multivariable logistic regression model 
using Map Algebra and the inverse logistic equation
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This method was used to generate a map of HIV prevalence in raster format with 5 kilometer grid resolution 
for each country, utilizing ArcGIS® software version 10.342.

Model validation.  The multivariable logistic regression models used to generate HIV prevalence maps were 
validated by splitting the data frame into a training data set for fitting models and a testing data set for evaluating 
model performance using the root mean squared error (RMSE). Training sets contained a simple random sample 
of 90% of the data; the remaining 10% served as a testing set to evaluate the out-of-sample prediction accuracy 
of each model. This procedure was repeated 10 times and the average value was used as the final RMSE. Each 
RMSE was calculated as the square root of the average (across N omitted locations) squared difference between 
the observed HIV prevalence at location i (Oi) and the estimated prevalence (Ei) obtained from equation (1):

= ∑ −=RMSE
E O
N
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A second method of model validation involved exploring and mapping the spatial structure of all residuals 
(observed value – predicted value) from the multivariable logistic regression models. Specifically, kriging inter-
polation was used to generate a continuous surface map of the residuals when Moran’s Index indicated significant 
spatial autocorrelation of the residuals.

Data availability statement.  The data that support the findings of this study are available from the 
Demographic and Health Surveys (http://www.measuredhs.com) but restrictions apply to the availability of these 
data, which were used under license for the current study, and so are not publicly available. Data are however 
available from the authors upon reasonable request and with permission of Demographic and Health Surveys.

Ethical approval and informed consent.  Procedures and questionnaires for standard Demographic 
Health Surveys (DHS) have been reviewed and approved by the ICF International Institutional Review Board 
(IRB). Additionally, country-specific DHS survey protocols are reviewed by the ICF IRB and typically by an IRB 
in the host country. The ICF International IRB ensures that the survey complies with the U.S. Department of 
Health and Human Services regulations for the protection of human subjects, while the host country IRB ensures 
that the survey complies with laws and norms of the nation. In the original primary data collection for each 
DHS, informed consent was sought from all participants prior to serological testing for HIV (http://dhsprogram.
com/What-We-Do/Protecting-the-Privacy-of-DHS-Survey-Respondents.cfm#sthash.Ot3N7n5m.dpuf). We 
sought and were granted permission to use the core dataset for this analysis by MEASURE DHS.

Results
Spatial variable selection.  The results from bivariate logistic regression analysis and the corresponding 
Moran’s Index for each variable are presented in Supplementary Table S1. The variables selected for inclusion in 
the final model for each country are in Table 1. Based on lack of spatial structure and/or statistical significance, 
condom use and distance to main roads were excluded from the final model for Kenya; condom use, lifetime 
number of sexual partners and HIV testing were excluded from the final model for Malawi; condom use, level of 
education, HIV testing, NDVI and distance to main roads were excluded from the final model in Mozambique; 
and HIV testing and NDVI were excluded from the final model for Tanzania.

HIV prevalence mapping.  HIV prevalence maps generated using the final multivariable logistic regression 
models for each country are presented in Fig. 2. Figure 3 identifies locations with high HIV prevalence (defined as 
prevalence ≥ the 80th percentile for the country). Table 2 summarizes the pixel-level HIV prevalence distribution 
estimations for each country. The estimated pixel-level HIV prevalence distribution in Kenya (Fig. 2A) ranged 
from 0.5% to 40%, with a median of 2.5%. The vast majority (80%) of locations in Kenya had an estimated HIV 
prevalence less than 4%, with a median of 2.1%. Figure 3A focuses on the 20% of Kenya with the highest HIV 
prevalence (median prevalence = 5.2%), where more than 80% of the Kenyan population resides.

The pixel-level HIV prevalence in Malawi (Fig. 2B) ranged from 0.6% to 28.5% (median prevalence =8.3%). 
The HIV prevalence is ≥11% in 20% of Malawi, where more than 19% of the population resides and the median 
HIV prevalence is 12.7%. In Mozambique (Fig. 2C), the pixel-level HIV prevalence distribution ranged from 2.5% 
to 18.2% with an 80th percentile of 8%; the median HIV prevalence was 6.5% overall and 12.4% in high-prevalence 
locations where more than 28% of the population resides (Fig. 3C). The pixel-level HIV prevalence distribution in 
Tanzania ranged from 0.5% to 17.6% with an 80th percentile of 5%; the median HIV prevalence was 3.2% overall 
and 6.2% in the high prevalence locations where more than 39% of the population resides (Figs 2D and 3D).

The stark geographical variability of HIV prevalence in Kenya, Malawi, Mozambique, and Tanzania is evident 
from Fig. 4. Kenya and Mozambique had bimodal HIV prevalence distributions (Fig. 4A and E), whereas Malawi 
and Tanzania had right-skewed distributions and moderate HIV prevalence (Fig. 4C and G). The right-skewed 
distributions of HIV prevalence in high prevalence areas were similar across countries, and large variation in 
prevalence was observed in these high burden areas (Fig. 4B,D,F and H).

http://1
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Model validation.  Prediction errors indicate that the multivariable logistic regression models were accu-
rate. Specifically, the prediction error was lowest for Tanzania (RMSE = 5.27), followed by Mozambique 
(RMSE = 6.49), Kenya (RMSE = 8.15), and Malawi (RMSE = 9.09). Moran’s Index identified significant spa-
tial structure in the residuals from the multivariable logistic regression models for Malawi, Mozambique, and 
Tanzania (P < 0.001), but not Kenya (P = 0.09). Continuous surface maps of residuals for Malawi, Mozambique 
and Tanzania suggest that the models could be underestimating the HIV prevalence in areas where prevalence is 
high (Fig. 5).

Discussion
The spatial analysis of DHS data on HIV prevalence in Kenya, Malawi, Mozambique, and Tanzania illustrates a 
rich and complex geographical variation of the HIV epidemic at the subnational level. The high-resolution maps 
produced from our analysis identified intranational patterns of the spatial distribution of HIV in SSA that would 
have been missed using macro-level national data. HIV prevalence ranged from 0.5% to 40% across areas in the 
four SSA countries in this study. In addition, the epidemiological profile of the epidemic in eastern SSA depended 
on local variation of different spatial variables associated with the risk of HIV. Poverty, NDVI, and distance to 
main roads were associated with HIV prevalence in some but not all countries included in this study. In contrast 
to our findings, main highways were shown to be associated with HIV infection in the high-risk subpopula-
tions of female sex workers and their clients in Kenya43. Because the data used in our study were obtained from 
a nationally representative population-based survey, our results pertain to factors associated with HIV preva-
lence in the general population rather than to specific high-risk subpopulations such as sex workers, which could 
account for the discrepancy between our results and findings from previous studies.

Male circumcision was the only statistically significant variable associated with HIV prevalence in all four 
countries. Male circumcision has a distinctive spatial structure that has been previously associated with the geo-
graphical distribution of HIV27. Furthermore, the spatial distribution of male circumcision along with its spatial 
association with HIV infection has supported the implementation of interventions such as voluntary medical 
male circumcision in several countries in SSA44–47.

An important finding that underscores the importance of localized data collection and resource allocation is 
that we did not identify consistent associations between population density and HIV prevalence. In Kenya, the 

Country Parameter Estimate P value Moran’s I P value

Kenya

Intercept −2.66 <0.001 − −

Male circumcision −0.015060 <0.001 0.20 <0.001

Lifetime number of sexual 
partners −0.009149 0.002 0.13 <0.001

Level of education −0.007512 0.008 0.84 <0.001

Poverty −0.007524 <0.001 0.51 <0.001

HIV Test 0.023420 <0.001 0.37 <0.001

Population density 0.000007 0.032 − −

NDVI 0.004674 0.014 − −

Malawi

Intercept −2.77 <0.001 − −

Male circumcision 0.006427 <0.001 0.34 <0.001

Level of education 0.009600 <0.001 0.32 <0.001

Poverty −0.011990 <0.001 0.90 <0.001

Population density 0.000015 0.17 − −

NDVI 0.013310 <0.001 − −

Distance to main roads −0.030720 0.0019 − −

Mozambique

Intercept −2.21 <0.001 − −

Male circumcision −0.010470 <0.001 0.28 <0.001

Lifetime number of sexual 
partners 0.008017 <0.001 0.38 <0.001

Poverty −0.013790 <0.0.001 0.71 <0.001

Population density 0.000031 0.001 − −

NDVI 0.002914 0.044 − −

Tanzania

Intercept −2.09 <0.001 − −

Condom use 0.029040 <0.001 0.66 <0.001

Male circumcision −0.014930 <0.001 0.56 <0.001

Level of education −0.009500 0.001 0.42 <0.001

Lifetime number of sexual 
partners 0.014430 <0.001 0.57 <0.001

Poverty −0.011210 <0.001 0.70 <0.001

Population Density −0.000015 0.043 − −

Distance to main roads −0.030400 0.0017 − −

Table 1.  Variables in the final logistic regression model for each country.
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burden of HIV infection appears to be concentrated in areas with high population density (80% of the Kenyan 
population resides in areas with high HIV prevalence), in contrast to the other three countries where only 19% to 
39% of the population resides in high-prevalence areas. Under the premise that in a resource-constrained envi-
ronment it is not possible to do everything, to everyone, everywhere, this result has important implications for 
understanding the potential impact of geographically-targeted interventions. Directing prevention and treatment 
interventions to locations with a relatively small population density but where HIV prevalence is high, such as in 
Tanzania and Mozambique, could be more cost-effective and have greater impact compared to always directing 
resources to high population density areas. However, the implications of these findings on programme design and 
resource allocation is unknown, and future research is needed to establish or refute this conjecture.

The high HIV prevalence areas identified in this study were consistent with the location of geographical clus-
ters or ‘hotspots’ identified using different methods1, 2, 18. However, the HIV prevalence maps generated in this 
study incorporated predictor variable information and they were able to capture greater detail in the spatial struc-
ture of those hotspots compared to standard procedures used in spatial clustering analysis.

We found that the spatial heterogeneity of the HIV epidemic in eastern SSA is high even in areas with 
high HIV prevalence. The distribution of HIV prevalence in high-prevalence areas was skewed and supported 

Figure 2.  High resolution maps for HIV prevalence in (A) Kenya; (B) Malawi; (C) Mozambique; and (D) 
Tanzania. Maps were created using ArcGIS® software by Esri version 10.342 (http://www.esri.com/).

http://www.esri.com/
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Figure 3.  Areas with high HIV prevalence (≥80th percentile) in (A) Kenya; (B) Malawi; (C) Mozambique; and 
(D) Tanzania. Maps were created using ArcGIS® software by Esri version 10.342 (http://www.esri.com/).

Estimation Kenya Malawi Mozambique Tanzania

Entire country

Median HIV prevalence 2.5% 8.3% 6.5% 3.2%

Range HIV prevalence 0.5–40.2% 0.6–28.5% 2.5–18.2% 0.5–17.6%

Standard deviation 2.6 2.9 2.7 2.1

Locations with high HIV prevalence (Prevalence ≥ the 80th percentile for the country)

Median HIV prevalence 5.2% 12.7% 12.4% 6.2%

Range HIV prevalence 4.0–40.2% 11.0–28.5% 11.0–18.2% 5.0–17.6%

Standard deviation 4.3 2.2 1.2 1.7

Table 2.  Pixel-level HIV prevalence distribution estimations for each country.

http://www.esri.com/
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very high HIV prevalence values, a result that is in agreement with the spatial variability of HIV observed in 
hyper-endemic settings such as in rural communities in South Africa48, 49. This finding about the highly complex 
spatial structure of the HIV epidemic in eastern SSA suggests that even in high infection areas, pockets of very 
high HIV prevalence compared to the national HIV prevalence can emerge. However, there was a rich and com-
plex variation of HIV prevalence among the countries included in our study even in these high HIV burden areas. 
For example, the median HIV prevalence in Kenya was almost two times higher in areas with high HIV preva-
lence compared with areas with low HIV prevalence. These high HIV prevalence areas had substantial variation, 
as indicated by the high standard deviation and a wide range in the HIV prevalence (4.0–40.2%). In contrast, the 
median HIV prevalence in areas with high HIV prevalence in countries such as Mozambique and Tanzania was 
also two times higher than the median HIV prevalence in areas with low HIV prevalence within the country, but 
geographical variation within these high burden areas was much smaller compared to the variation observed in 
Kenya.

Several study limitations could have affected our results. Given the multiple logistical difficulties in conducting 
the DHS, some of the variables included in our study could have been affected by inherent biases in the data, such 
as variability in response rates to HIV testing and under-sampling of mobile individuals and key subpopulations 
at risk50, 51. For instance, some high-risk subpopulations, such as female sex workers, injecting drug users, men 
who have sex with men, and mobile individuals, could have been missed by the surveys. However, it is not clear 
to what extent our findings might be affected by under-sampling high-risk populations. Moreover, our results 
could be affected by patterns of migration and anti-retroviral therapy coverage, information not provided by DHS 

Figure 4.  Density distribution of HIV prevalence in Kenya, Malawi, Mozambique and Tanzania for the entire 
country (left panel; A, C, E, G) and areas with high HIV prevalence (≥80th percentile) in the same country 
(right panel; B, D, F, H).
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surveys but that could improve the accuracy of spatial estimation. In addition, the inclusion of data from other 
sources, such as databases from health facilities or HIV treatment clinics, could improve prevalence estimation 
accuracy. An additional potential bias is the global positioning system displacement process of the DHS sampling 
data points, used to preserve their confidentiality52. This process could have an impact on the precision of HIV 
estimations, particularly affecting the location of areas with high HIV burden by several kilometers. Lastly, we 
included several important variables associated with HIV prevalence that were obtained from reliable sources. 
However, other variables could have benefited our analysis, such as distance to the nearest health facility and 
coverage of current programme interventions. We recommend the inclusion of relevant available variables when 
implementing this methodology at the regional or national level.

Despite these potential limitations, our study highlights the key role that predictor variables might play on the 
spatial variability of HIV infection. The spatial distribution of these variables provides valuable information for 
use in generating detailed maps of HIV prevalence distributions. Here, we described straightforward and widely 
available yet powerful methods for generating intranational estimates of HIV prevalence. These maps illustrate 
the high spatial variation of the HIV epidemic at subnational levels of eastern SSA. Moreover, these maps ena-
ble delineation of areas where the HIV epidemic is concentrated. In an era of limited and declining resources 
available for HIV prevention and control, it is crucial to focus prevention efforts to key vulnerable populations 
at the highest risk in areas of greatest HIV burden, as proposed by UNAIDS and PEPFAR5, 11. Effective preven-
tion strategies that are currently available include antiretroviral therapy, pre-exposure prophylaxis, voluntary 
medical male circumcision, and testing and treatment, among others. However, implementation of these pre-
vention strategies throughout the entire general population would present significant challenges, particularly in 
resource-constrained environments such as in SSA. Therefore, maximizing the impact of prevention programmes 
on HIV is a priority to reverse the epidemic. Detailed mapping of the spatial structure of the HIV epidemic such 
as the one described in our study could boost programme efficiency and maximize programme outputs. Such 
maps provide essential information to strategically target geographic areas to those sub-national units and popu-
lations where resources can achieve the greatest impact, and where they are needed the most.
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